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The addition of elastic polymers to turbulent liquids is known to produce significant
drag reduction. In this study, we prove that the drag in pipe and channel flows of an
unforced laminar fluid constitutes a lower bound for the drag of a fluid containing
dilute elastic polymers. Further, the addition of elastic polymers to laminar fluids
invariably increases drag. This proof does not rely on the adoption of a particular
constitutive equation for the polymer force, and would also be applicable to other
similar methods of drag reduction, which are also achieved by the addition of certain
particles to a flow. Examples of such methods include the addition of surfactants to
a flowing liquid and the presence of sand particles in sandstorms and water droplets
in cyclones.
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1. Introduction
The volume flux of a laminar Poiseuille flow, in a channel or pipe, will always

be greater than the volume flux of the equivalent turbulent flow (Thomas 1942).
(In this paper, two flows are considered ‘equivalent’ if they are driven by the same
average pressure gradient.) However, various methods have been developed by which
the volume flux of a turbulent flow can be increased. These methods range from
adding riblets to the wall surface (Karniadakis & Choi 2003), to targeted blowing
and suction at the flow boundary (Collis et al. 2004) (a form of flow-control known
as transpiration). In this study, we consider drag reduction due to the presence of
elastic polymers in a turbulently flowing liquid.

It has been well demonstrated that adding elastic polymers to a turbulent liquid
will dramatically reduce the drag on the fluid, and significantly increase the flow rate
(Toms 1948) (see White & Mungal 2008 for a recent review). It has been argued that
the polymers reduce drag by transporting momentum within the fluid (Min et al.
2003), as well as by countering vorticity and eddying motions, and thereby reducing
fluctuations (Luchik & Tiederman 1988; Kim et al. 2007).

Experimental results show that at critical values of polymer-concentration and
polymer-relaxation time, the drag experienced by the fluid will be reduced, and that
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this effect can require only very low concentrations of the polymer (Virk et al. 1967;
Sreenivasan & White 2000). In one particular example, a concentration in the order
of 10 p.p.m. of a certain long-chain polymer has been found to be capable of reducing
drag by up to 80 % (Virk 1975). However, a limit appears to exist to the drag reduction
that an added polymer may produce. This limit is known as Virk’s asymptote (Virk
1971). It, however, remains a purely empirical result, and there is no theoretical proof
that it constitutes the maximum allowable drag reduction.

In this paper, we prove that the force caused by the presence of the polymer
will be incapable of raising the bulk flow rate of a turbulent Poiseuille flow to
beyond that of the equivalent unforced laminar flow. (Throughout this paper, the
term ‘unforced’ is used to describe a flow which is not subjected to any body forces.)
We prove this without reference to any constitutive equation for the polymer force.
We also prove that the polymer force, when acting upon a laminar Poiseuille flow,
will decrease the fluid’s bulk flow rate. This is not be true for all methods of drag
reduction. In the case of transpiration flow-control, it has been shown using direct
numerical simulations of low-Reynolds-number turbulent flows that it is possible to
increase the volume flux of a turbulent fluid to beyond that of the equivalent laminar
flow (Min et al. 2006). Moreover, the conditions required to produce sublaminar
drag in a turbulent Poiseuille flow through a channel have been derived, for arbitrary
Reynolds number, by Marusic, Joseph & Mahesh (2007). Subsequently, Bewley (2009)
showed that the power saved by reducing drag to sublaminar levels via blowing and
suction-flow control must be less than the power transferred to the fluid by that flow
control.

A caveat must be made about the proof presented in this paper. The presence
of elastic polymers in a Newtonian liquid generally causes the solution to become
significantly shear-thinning. However, if the polymer is sufficiently dilute, then the
fluid’s viscosity will be only negligibly affected by the polymer’s presence, and the fluid
will remain effectively Newtonian. Such fluids are also known as Boger fluids, and
their advantage over other polymer-containing fluids is that they allow the effects of
the polymer’s elasticity to be considered separately from their shear-thinning effects
(James 2009).

In the subsequent proof, it has been assumed that the fluid’s density and viscosity
are not significantly affected by the presence of the polymer. However, it must be
noted that the presence of the polymer increases the viscosity of the solution beyond
that of the pure solvent, and that a stress applied to the solution will merely act to
reduce this increase. Thus, regardless of the applied stress, the viscosity of the solution
should remain greater than that of the pure Newtonian solvent.

It should, therefore, be reasonable to assume that if the addition of the polymer
cannot produce sublaminar drag when the increase in viscosity is neglected, then
neither can it when the increase in viscosity is not neglected. This follows from the
fact that a higher viscosity will impede flow.

The polymers may also affect the fluid in a more fundamental way, by either
delaying or facilitating the onset of turbulence. When undergoing rotational flow,
such as Taylor–Couette flow, fluids containing polymers have been found to transition
to turbulence at lower Reynolds numbers than their pure solvents (Shaqfeh 1996;
Groisman & Steinberg 2000). Conversely, the presence of polymers in pipe flows has
been found to actually delay the onset of turbulence in a small minority of cases
(Virk et al. 1967).

Other forms of passive drag reduction also exist, to which the proof presented
herein (and its caveat) will apply. The presence of aggregates of surfactant molecules,



The maximum drag reduction in Poiseuille flow 475

known as micelles, in a turbulently flowing liquid has been known to be capable of
producing a slightly greater degree of drag reduction than the presence of elastic
polymers (Warholic, Schmidt & Hanratty 1999). A similar phenomenon is also
believed to occur in sandstorms (Gore & Crowe 1989) and cyclones (Barenblatt,
Chorin & Prostokishin 2005). Under certain circumstances, strong turbulent winds
suspending sand particles or water droplets can encounter significantly less drag than
the equivalent flows of pure turbulent air.

What each of these methods of drag reduction has in common with polymer drag
reduction is that they result from the interaction of solutes with the flow, and involve
no external source of energy or momentum.

2. Equations of channel flow
The proof is presented in § 4 of this paper. It is an extension of the work by Busse

(1970) and Howard (1972), who considered the minimum drag for the flow of an
unforced fluid in a channel. The derivation follows a similar path to that presented
by Marusic et al. (2007) for a Poiseuille flow subjected to blowing and suction-flow
control. This section contains the mathematical preliminaries, which we make use of
in § 4 and in an alternative proof presented in § 5.

We consider an incompressible fluid driven by a constant pressure gradient and
subjected to a force per unit volume f caused by the presence of the polymer. In
this study, time and velocity have been normalised using ν, the kinematic viscosity of
the fluid, and d , the height of the channel. The pressure and polymer force have also
been normalised by the fluid’s density ρ. The resulting Navier–Stokes and continuity
equations are written as follows:

∂V
∂t

+ V · ∇V = −∇p + exP + ∇2V + f , (2.1)

∇ · V = 0, (2.2)

where V denotes the normalised velocity. The pressure has been split between a
constant pressure gradient P , caused by an imposed pressure gradient, and a variable
pressure function p, such that the total pressure at any point is given by

ptotal (x, y, z, t) = p(x, y, z, t) − Px. (2.3)

Hence, the x direction is the direction of the imposed pressure gradient, and is,
therefore, also the streamwise direction. The y direction is defined as the spanwise
direction, and the z direction is defined as the wall-normal direction.

The system has been defined as a channel of infinite length and width, and unit
height. A diagram of the channel is shown in figure 1. For the purposes of the
subsequent derivations, we define the channel as having length and width L, and we
consider the limiting case as L → ∞. The Cartesian coordinate system has been used,
and the domain is, therefore,

−∞ < x, y < ∞, − 1
2

� z � 1
2
. (2.4)

The subsequent derivations were also performed for a pipe flow, the results of which
can be found in the Appendix. For all quantities, wall-parallel averages are denoted
by an overbar and are defined via

F̄ (z, t)
def
= lim

L→∞

1

L2

∫ L/2

−L/2

∫ L/2

−L/2

F (x, y, z, t) dx dy. (2.5)
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Figure 1. Diagram of the channel domain. We consider an infinite channel in which L → ∞.

It should be noted that for a statistically steady-state flow, a wall-parallel average
will be equivalent to a temporal average. This fact will be used subsequently. In this
paper, a statistically steady-state flow refers to a fully developed flow, whose bulk
(spatially averaged) characteristics are independent of time. This will not necessarily
be a flow in which the local velocity at any point is independent of time.

An average over the entire channel is denoted by angled brackets and is defined via

〈F (t)〉 def
=

∫ 1/2

−1/2

F̄ (z, t) dz. (2.6)

The Reynolds number, based on the channel height and the bulk velocity, is ReB =
〈V̄ x〉. We also decompose the velocity, pressure and polymer force into wall-parallel
averaged components (referred to from this point on as ‘mean’ components) and
fluctuating components,

V = V̄ + u, p = p̄ + p′, f = f̄ + f ′, (2.7)

where the mean of each fluctuation is zero: ū = f ′ = 0, p′ = 0. We assume the flow
is subjected to a no-slip boundary condition, and so we have,

V̄ = u = 0, at z = ± 1
2
. (2.8)

Since the x direction is the direction of the constant pressure gradient P , and since
there exists no driving force which should sustain a bulk flow in the y or z directions,
the velocity functions may be written as

V̄ (z, t) = (V̄ x, 0, 0), u(x, y, z, t) = (u, v, w). (2.9)

2.1. Energy equations

We derive energy equations relating to the mean and fluctuating components of a
statistically steady-state flow. These will be used in subsequent equations.

To do this, we first decompose all terms in the Navier–Stokes equation into their
mean and fluctuating components, and then making use of (2.2), we have

∂ V̄
∂t

+
∂u
∂t

+ ∇ · (V̄ u + uV̄ + uu) = −ez

∂p̄

∂z
− ∇p′ + exP +

∂2V̄
∂z2

+ ∇2u + f̄ + f ′. (2.10)
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The wall-parallel average of (2.10) is

∂ V̄
∂t

+
∂

∂z
(uu) = −ez

∂p̄

∂z
+ exP +

∂2V̄
∂z2

+ f̄ . (2.11)

The evolution equation for the fluctuations in velocity is, therefore, the difference
(2.10)–(2.11), which is

∂u
∂t

+ ∇ · (V̄ u + uV̄ + uu − uu) = −∇p′ + ∇2u + f ′. (2.12)

The energy equation for the mean flow can be found by taking 〈V̄ · (2.11)〉. We
may use the fact that for a statistically steady-state flow, a wall-parallel average is
equivalent to a temporal average to remove the time-derivative term form this energy
equation. We thus obtain,

−
〈

uw
dV̄ x

dz

〉
= P 〈V̄ x〉 −

〈∣∣∣∣dV̄ x

dz

∣∣∣∣
2
〉

+ 〈V̄ · f̄ 〉. (2.13)

Similarly, the energy equation for the fluctuations in the flow can be found by taking
〈u · (2.12)〉. Again, removing the time-derivative term form the resulting equation
gives, 〈

uw
dV̄ x

dz

〉
= −〈|∇u|2〉 + 〈u · f ′〉. (2.14)

The overall energy equation is then simply the sum of (2.14) and (2.15), which is

0 = P 〈V̄ x〉 −
〈∣∣∣∣dV̄ x

dz

∣∣∣∣
2
〉

− 〈|∇u|2〉 + 〈V · f 〉. (2.15)

The term 〈V · f 〉 in (2.15) represents the rate at which the polymer does work upon
the fluid per unit of volume, throughout the channel. If negative, 〈V · f 〉 represents
the rate at which the polymer extracts energy from the flow.

3. Work done by the polymer upon the flow
In the previous section, we showed that 〈V · f 〉, which represents the overall rate

at which the polymer does work upon the flow per unit of volume, is crucial to
determining the bulk flow rate of the fluid 〈V̄ x〉. In this section, we show that
〈V · f 〉 < 0.

The exact physical causes of drag reduction due to elastic polymers are open to
debate. As mentioned in § 1 of this paper, they are believed to involve fundamentally
altering the turbulent fluid’s flow profile by transporting momentum within the fluid,
and by countering vorticity and eddying motions. However, none of these mechanisms
involves a net transfer of energy from the polymer to the fluid.

The polymer draws energy from the flow, and may return energy to the flow. The
energy is stored meanwhile as elastic energy within the polymer. Where the term V · f
is positive, the polymer is imparting energy to the flow; and where it is negative, the
polymer is drawing energy from the flow. The polymer has no source of energy apart
from the flow, and therefore, the overall work done by the polymer upon the flow
〈V · f 〉, cannot be positive.

There are two paths by which the presence of the polymer may affect the total
energy of the flow: the first is the transport of energy into and out of the channel
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as elastic energy due to the stretching of the polymer molecules, and the second is
the dissipation of elastic energy from within the polymer molecules. However, in a
statistically steady-state flow, the average elongation of a polymer molecule entering
the channel will be equal to the average elongation exiting the channel. Hence, there
will in fact be no net transport of elastic energy into, or out of, the channel.

Thus, since the overall work done by the polymer upon the flow must be equal to
the rate of dissipation of elastic energy within the polymer molecules, we may say
that,

〈V · f 〉 = −〈εp〉 � 0, (3.1)

where εp(x, y, z, t) denotes the rate at which elastic energy from within the polymer
molecules is dissipating at a point in the flow. For a discussion of the magnitude of
this dissipation rate, see Ptasinski et al. (2003).

4. Volume-flux comparison between laminar and turbulent flows
The flow profile for an unforced laminar fluid is given by

Ul =
P

2

(
1

4
− z2

)
, (4.1)

and its bulk flow rate will be

〈Ul〉 =
P

12
. (4.2)

We now consider a turbulent flow subjected to a polymer force. To this end, we
redefine the polymer force in terms of a stress tensor

∇ · τ = f . (4.3)

This tensor refers to the stress experienced by the fluid due to the polymer force. For
a statistically steady-state flow, the component of (2.11) in the x dimension may now
be written as

d

dz

[
uw − Pz − dV̄ x

dz
− τ̄ xz

]
= 0, (4.4)

where τ̄ xz is one component of the mean of the stress tensor, and is defined by

dτ̄ xz

dz
= f̄ x . (4.5)

We can obtain an expression for P by integrating (4.4), which results in

Pz = uw − 〈uw〉 − τ̄ xz + 〈τ̄ xz〉 − dV̄ x

dz
. (4.6)

The bulk flow rate can, therefore, be found by taking 〈z · (4.6)〉 and rearranging. By
doing so, we obtain

〈V̄ x〉 =
P

12
− 〈zuw〉 + 〈zτ̄ xz〉. (4.7)

The 〈zuw〉 term in the above equation can be evaluated by taking 〈uw · (4.6)〉 and
substituting the energy equation for the fluctuations (2.14). The 〈zτ̄ xz〉 term can be
evaluated similarly by taking 〈τ̄ xz · (4.6)〉, and integrating one of the resulting terms
by parts, taking into account the no-slip boundary condition and (4.5). In doing so,
we obtain a new equation for 〈V̄ x〉 after substituting the results into (4.7). Then by
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comparing this result to (4.2), we obtain the following relation between the flow rates
of a turbulent fluid containing polymers and an unforced laminar flow:

〈Ul − V̄ x〉 =
1

P
[〈(uw − 〈uw〉 − τ̄ xz + 〈τ̄ xz〉)2〉 + 〈|∇u|2〉 − 〈V · f 〉]. (4.8)

The first term in the right-hand side of the above equation represents the difference
between the dissipation rate in the unforced laminar flow and the dissipation due
to the mean flow in the case of a turbulent flow containing the polymer. The term
〈|∇u|2〉 represents dissipation due to the fluctuations. In the case of a fluid containing
polymers for drag reduction, the magnitude of 〈V · f 〉 will be small, since the required
concentration of polymers is very low. Hence, the term 〈|∇u|2〉 dominates the above
equation, since the dissipation due to fluctuations is known to be significantly greater
than that due to the mean flow in a turbulent fluid (Pope 2000). Any significant drag
reduction will, therefore, be achieved by reducing 〈|∇u|2〉.

It is now clear that for a polymer force to raise the bulk flow rate of the fluid to
greater than or equal to that of a laminar Poiseuille flow, the following would need
to hold:

〈V · f 〉 � 〈(uw − 〈uw〉 − τ̄ xz + 〈τ̄ xz〉)2〉 + 〈|∇u|2〉. (4.9)

The question of whether or not the presence of a polymer force may produce
sublaminar drag, therefore, becomes a question of the sign and magnitude of 〈V · f 〉.
Hence, because of (3.1), we conclude that polymer forces cannot produce sublaminar
drag in turbulent fluids.

Furthermore, by removing all of the fluctuating terms from (4.8), we obtain a
relation between the bulk flow rate of a laminar Poiseuille flow subject to a polymer
force to that of the equivalent unforced laminar flow. It is clear by inspection that
if the polymer force is anywhere non-zero, then the bulk flow rate will be reduced.
We may infer from this that while such polymer forces are known to be capable of
causing drag reduction in turbulent fluids, they will invariably increase the drag when
acting upon a laminar flow.

An alternative methodology, which could have been employed in this proof, has
been presented by Bewley & Aamo (2004), who employed it in reference to drag
reduction for a Poiseuille flow subject to blowing and suction-flow control at the
walls. The difference between their methodology, and that employed here is that they
have explicitly considered the magnitude of the drag at the wall. To rederive this result
via their methodology would simply be a matter of removing all terms in Bewley
(2009) which relate to the blowing and suction method of drag reduction, and adding
a body force term, as we have done here, to account for the effect of the polymer.

5. Minimising drag
There is an alternative way to prove the result given in § 4. By adding P 〈V̄ x〉 to

both sides of (2.15), and substituting (3.1), we obtain

〈V̄ x〉 = lim
L→∞

1

L2

∫ 1/2

−1/2

∫ L/2

−L/2

∫ L/2

−L/2

(
2V̄ x − 1

P

∣∣∣∣dV̄ x

dz

∣∣∣∣
2

− 1

P
|∇u|2

)
dx dy dz − 〈εp〉. (5.1)

While there is no unique solution to the above equation, it is possible, using the
calculus of variations, to find the functions for V̄ x and u which maximise the value
of the integral. To do so, we must first set 〈εp〉 to zero. This is equivalent to assuming
that the rate of dissipation of elastic energy within the polymer is negligible. We can,
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however, do this without loss of generality, since a non-zero 〈εp〉 term would only
ever reduce the value of 〈V̄ x〉.

The derivation is omitted here, but the functions which maximise 〈V̄ x〉 are

V̄ x |
max〈V̄ x 〉 =

P

2

(
1

4
− z2

)
, u|

max〈V̄ x〉 = 0, (5.2)

which is the profile of an unforced laminar flow, Ul(z). This implies that of all the
physically allowable flow profiles of a Poiseuille fluid, the greatest bulk flow rate is
obtained when flow profile is exactly that of an unforced laminar flow.

Therefore, since (4.6) indicates that the presence of a polymer force will cause a
deviation to the profile of a laminar flow away from (5.2), we can conclude that
adding such elastic polymers to a laminar flow will only result in increased drag.

6. Concluding remarks
The results show that the flow rate of an unforced laminar fluid constitutes an

upper bound for the flow rate of a fluid containing dilute elastic polymers. This result
can also potentially be applied to flows subject to drag reduction achieved by the
addition of other types of particles to the fluid. Examples include the addition of
surfactant molecules to a flowing liquid, and the addition of water droplets or sand
particles to a flowing gas.

However, the additives which produce the drag reduction may also alter the fluid’s
density and viscosity, as is the case for elastic polymers. If their presence has affected
the fluid’s density or viscosity, then it is the flow rate of a laminar fluid with the same
density and viscosity as the solution (rather than the density and viscosity of the pure
solvent) which constitutes an upper bound on the bulk flow rate of the mixture.

Furthermore, if the resulting mixture produces a fluid that is either compressible
or non-Newtonian, then this proof may not apply. However, as we have argued in § 1
of this paper, the minimum viscosity of a polymer solution will be greater than the
viscosity of the pure Newtonian solvent.

An increased viscosity will reduce the flow rate. We can thus conclude that since the
addition of the polymer cannot produce sublaminar drag when the thickening effect
of the polymer is neglected, it will neither be capable of producing sublaminar drag
in real flows in which the thickening effect of the polymer will often be significant.

By considering the overall energy equation (2.15) and the drag minimising procedure
used in § 5, we see that for a body force (or boundary force) to produce sublaminar
drag would require an energy input that is greater than the combination of the rate of
dissipation due to turbulent fluctuations, 〈|∇u|2〉, the dissipation within the polymer
molecules, 〈εp〉 and the effect of the deviation of the flow profile, V̄x(z), away from its
laminar equivalent, Ul(z), caused by the Reynolds stress and the body force.

This concurs with Bewley’s recent result (2009), showing that the power saved via
sublaminar drag reduction produced by flow control must be less than the power cost
to produce that drag reduction.

This method has not proved capable of deriving or approximating Virk’s asymptote
from first principles. The reason for this is that Virk’s asymptote applies strictly to
fully developed turbulent flow, for which the flow profile has also yet to be derived
from first principles. Hence, we are only able to compare turbulent flows with drag
reduction to laminar flow.

For this reason, we are only able to conclude that the drag is minimised by removing
the fluctuations. However, by its definition, fully developed turbulent flow contains
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significant random fluctuations. At maximum drag reduction, these fluctuations will
only have been reduced by the action of the polymer. Therefore, to derive Virk’s
asymptote would require the ability to quantify the amount by which these fluctuations
may be reduced. This is something we cannot do without a theoretical basis for the
nature of the fluctuations, and an analytical closure for the Navier–Stokes equation.

If the assumption of fully developed turbulent flow allowed some further
assumptions to be made about the nature of the velocity vectors V̄ and u, then
it may prove possible to derive Virk’s asymptote.

It is notable that the maximum drag reduction produced by the presence of
surfactant micelles in the fluid is very similar to that produced by the presence of
the polymer. In fact, the maximum drag reduction produced by the micelles slightly
exceeds Virk’s asymptote. It is also notable that when a flow containing a surfactant
reaches maximum drag reduction, the Reynolds stress is everywhere zero (Warholic
et al. 1999). (The Reynolds stress is given by uu. It first appears in the second term
in left-hand side of (2.11).) The same is not true for a flow containing a polymer at
the maximum drag reduction (Ptasinski et al. 2001).

The relevance of this is that the Reynolds stress represents the effect of the
fluctuations upon the mean flow. It is via the Reynolds stress that the fluctuations
draw energy from the mean flow. This transfer of energy is represented by the first
term on the left-hand side of (2.13) and (2.14).

Any method of drag reduction, which does not act by directly imparting energy
upon the mean flow, will function by altering the Reynolds stress. We have shown
that no method of drag reduction which is due to the presence of a body force will
be capable of producing sublaminar drag, unless its overall action imparts energy
upon the flow. It follows that the net effect of a non-zero Reynolds stress in such
flows must be to extract energy from the mean flow. Such methods of drag reduction,
therefore, work by minimising the effect of the Reynolds stress upon the mean flow.

A flow with zero (or negligible) Reynolds stress, therefore, constitutes a natural
upper bound for any such methods of drag reduction. In such a flow, the fluctuations
can only extract energy from the mean flow indirectly via the body force. Such flows
could then only differ in the extent to which the body force affects the mean flow.

The authors wish to acknowledge the financial support of the Australian Research
Council and the University of Melbourne Postgraduate Scholarship Scheme.

Appendix. Pipe flow
In this appendix, we extend these results to the common case of flow through a pipe.

To do so, we use the cylindrical polar coordinates (r, θ, x), where x is the streamwise
distance from the beginning of the pipe and r is the radial distance from the pipe’s
centre. A diagram of the system is shown in figure 2. The system’s domain is

−∞ < x < ∞; 0 � θ < 2π; 0 � r � 1. (A 1)

The wall-parallel averages are again denoted by an overbar, and are now defined via

F̄ (r, t)
def
= lim

L→∞

1

L

∫ L/2

−L/2

∫ 2π

0

F (r, θ, x, t) dθ dx, (A 2)

and the overall average is denoted by angled brackets. It is now defined via

〈F (t)〉 def
= 2

∫ 1

0

F̄ (r, t)r dr. (A 3)
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r

x

L

1

θ

Figure 2. Diagram of the pipe domain. We consider an infinite pipe in which L → ∞.

Again the Reynolds number, this time given by the pipe’s radius and the bulk
velocity, is ReB = 〈V̄ x〉. The pressure, velocity and polymer force are decomposed
into mean and fluctuating components as before, this time with

Vx = V̄ x + u, Vθ = v, Vr = w. (A 4)

The derivation follows a similar path to the channel-flow case, therefore, much
of the detail will be omitted here. Beginning with the Navier–Stokes (2.1) and
continuity (2.2) equations as before, we obtain the energy equations for a statistically
steady-state flow via an entirely analogous path. The energy equations thus obtained
are identical to those of channel flow (see (2.13)–(2.15)), except that the wall-normal
direction z is here replaced by its pipe-flow analogue r .

We then proceed along the path described in § 4, in this way, we derive the following
comparison between the flow rates of a turbulent fluid containing the polymer and
an unforced laminar fluid:

〈Ul − V̄ x〉 =
1

P
[〈(uw − τ̄ xr )

2〉 + 〈|∇u|2〉 + 〈εp〉], (A 5)

which, for reasons already given, must be positive if uw is anywhere non-zero, or the
polymer is present.

We may also prove this same result via the calculus of variations, as described in
§ 4. Since the energy equations are identical in form to those in the channel-flow case,
we perform the calculus of variations upon an integral whose integrand is identical
to that in (5.1), with the Cartesian coordinates used in the channel-flow case replaced
by their cylindrical polar equivalents for the pipe flow. In doing so, we find that the
flow profile which maximises the flow rate of a fluid in a pipe is,

V̄ x |max〈V̄ x〉 =
P

4
(1 − r2), u|max〈V̄ x 〉 = 0, (A 6)

which is the flow profile for an unforced laminar flow within a pipe.
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